Web Scrapping – Passer Data (Part I)

For the first time in many years I’ve joined a Fantasy Football league with some of my family. One of the reasons I have not engaged in the Fantasy football is that, frankly, I’m not very good. In fact, I’m pretty bad. I have a passing interest in Football, but my interests lie more with Baseball than football (especially in light of the NFLs policy on punishing players for some infractions of league rules, but not punishing them for infractions of societal norms (see Tom Brady and Ray Lewis respectively).

That being said, I am in a Fantasy Football league this year, and as of this writing am a respectable 5-5 and only 2 games back from making the playoffs with 3 games left.

This means that what I started on yesterday I really should have started on much sooner, but I didn’t.

I had been counting on ESPN’s ‘projected points’ to help guide me to victory … it’s working about as well as flipping a coin (see my record above).

I had a couple of days off from work this week and some time to tinker with Python, so I thought, what the hell, let’s see what I can do.

Just to see what other people had done I did a quick Google Search and found someone that had done what I was trying to do with data from the NBA in 2013.

Using their post as a model I set to work.

The basic strategy I am mimicking is to:

I start of importing some standard libraries pandas, requests, and BeautifulSoup (the other libraries are for later).

import pandas as pd
import requests
from bs4 import BeautifulSoup
import csv
import numpy as np
from datetime import datetime, date

Next, I need to set up some variables. BeautifulSoup is a Python library for pulling data out of HTML and XML files.. It’s pretty sweet. The code below is declaring a URL to scrape and then users the requests library to get the actual HTML of the page and put it into a variable called r.

url = 'http://espn.go.com/nfl/teams'
r = requests.get(url)

r has a method called text which I’ll use with BeautifulSoup to create the soup. The 'lxml' declares the parser type to be used. The default is lxml and when I left it off I was presented with a warning, so I decided to explicitly state which parser I was going to be using to avoid the warning.

soup = BeautifulSoup(r.text, 'lxml')

Next I use the find_all function from BeautifulSoup. The cool thing about find_all is that you can either pass just a tag element, i.e. li or p, but you can add an additional class_ argument (notice the underscore at the end … I missed it more than once and got an error because class is a keyword used by Python). Below I’m getting all of the `ul’ elements of the class type ‘medium-logos’.

tables = soup.find_all('ul', class_='medium-logos')

Now I set up some list variables to hold the items I’ll need for later use to create my dictionary

teams = []
prefix_1 = []
prefix_2 = []
teams_urls = []

Now, we do some actual programming:

Using a nested for loop to find all of the li elements in the variable called lis which is based on the variable tables (recall this is all of the HTML from the page I scrapped that has only the tags that match <ul class='medium-logos></ul> and all of the content between them).

The nested for loop creates 2 new variables which are used to populate the 4 lists from above. The creating of the info variable gets the a tag from the li tags. The url variable takes the href tag from the info variable. In order to add an item to a list (remember, all of the lists above are empty at this point) we have to invoke the method append on each of the lists with the data that we care about (as we look through).

The function split can be used on a string (which url is). It allows you to take a string apart based on a passed through value and convert the output into a list. This is super useful with URLs since there are many cases where we’re trying to get to the path. Using split('/') allows the URL to be broken into it’s constituent parts. The negative indexes used allows you to go from right to left instead of left to right.

To really break this down a bit, if we looked at just one of the URLs we’d get this:


The split('/') command will turn the URL into this:

['http:', '', 'www.espn.com', 'nfl', 'team', '_', 'name', 'ten', 'tennessee-titans']

Using the negative index allows us to get the right most 2 values that we need.

for table in tables:
    lis = table.find_all('li')
    for li in lis:
        info = li.h5.a
        url = info['href']

Now we put it all together into a dictionary

dic = {'url': teams_urls, 'prefix_2': prefix_2, 'prefix_1': prefix_1, 'team': teams}
teams = pd.DataFrame(dic)

This is the end of part 1. Parts 2 and 3 will be coming later this week.

I’ve also posted all of the code to my GitHub Repo.